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Spatiotemporal on-off intermittency by random driving in spatially extended systems modeled by coupled
map lattices is discussed. System size and coupling strength influence the onset of intermittency largely. At the
onset, the temporal distribution of the laminar phase of one site still exhibits a power law with exponent
—3/2 like that in a single map, while the spatial distribution displays a —1 power law with an exponential tail

at large size for strong couplings.

PACS number(s): 05.45.+b

Intermittency is a phenomenon first observed in fluids,
later in chaotic systems. Besides the famous Pomeau-
Manneville types I-1II intermittency [1] and crisis-induced
intermittency [2], another type of intermittency, on-off inter-
mittency, was introduced recently by Platt and co-workers
[3-5]. Some features of this type of intermittency have also
been described by other authors [6]. This kind of intermittent
behavior has two states: an “off” state and an “on” state.
The off state is nearly constant and can remain for a very
long period of time, while the on state is a chaotic outbuyst
from the off state abruptly and returns back to the off state
suddenly. This kind of intermittency has a distinct character-
istic that the distribution for the laminar phase at the onset
exhibits a universal asymptotic —3/2 power law. The previ-
ous investigations of on-off intermittency mainly focused on
low-dimensional systems. Very recently, Yang and Ding [7]
studied on-off intermittency in an uncoupled map lattice with
spatially uniform random driving and all the sites of the lat-
tice are synchronized eventually before a certain critical
value. In this paper we report our recent studies on this prob-
lem in spatially extended systems with spatially nonuniform
random driving.

For the sake of simplicity, we adopt the following coupled
map lattice (CML) model to describe the dynamics of the
extended systems, i.e.,

x(n+1,0)=(1—&)f(n,i)+ ;[f(n,i~1)+f(n,i+ ]
1)

with the periodic boundary condition f(n,i+L)=f(n,i),
where L is the system size. Here n is the time index,
i(=1,2,...,L) the space index. In the conventional
CML models [8—12], f(n,i)=g[x(n,i)] is a chaotic map-
ping function. We modify the mapping function as
f(n,i)=z(n,i)g[x(n,i)] with z(n,i) an irregular series both
in time and space. In this paper we only study the case that
g(x)=ax(1—x) and z(n,i) is a random number uniformly
distributed in the interval (0,1]. The spatiotemporal on-off
intermittent behavior of this system is shown in Fig. 1 for
L=1200, a=2.2, and € =0.01. In Fig. 1(a) we plot the space
variables in a ring for a certain time, while in Fig. 1(b) six of
the site’s states versus time are plotted. The off state is still
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near the hyperplane: x(n,1)=x(n,2)=-..-=x(n,L)=0,
while outbursts, the on states, occur randomly in both time
and space.

It is known [4,5] that the onset for a single logistic map
by uniform random driving is a,.=e=2.71828 ... . A prob-
lem that arises is how the coupling and the system size in-
fluence the onset of intermittency. Unlike a single map for
which the critical value of onset can be easily calculated
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FIG. 1. On-off intermittent behaviors in time and space:
a=2.2, e=0.01, and L =1200. (a) The state variables in the lattice
at different times. Due to the periodic boundary we plot them in
rings. (b) Six of the state variables x(n,i) (i =1, 200, 400, 600, 800,
1000) versus time.
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FIG. 3. The critical lines of on-off intermittency in the a-¢
0.7 plane: a single map by L-noise driving: L=2 (dotted) and L=3
(b) (solid); random driving CML: L=2 (dashed) and L=3 (dot-
06 dashed).
0.5
041 From Eq. (1) one can easily see that when £=1 for
& L=2 and e=% for L =3, the motions of the different sites
$0-31 are synchronized and the spatiotemporal systems are reduced
0.2 just to temporal ones due to symmetry. The system dynamics
01] ip these two cases can be described by the following equa-
tions:
0.0
0.14+— : : . : , ; x(n+1)=[(1-¢&)z(n,1)+ez(n,2)]g[x(n)]

FIG. 2. (a) The critical lines of on-off intermittency in the a-&
space for different system size L. From left to right: L =2, 3, 4, 10,
60. (b) e—a, versus L for e=0.1 (A) and £€=0.3 (< ). They are
best fitted by Eq. (2) with 8=1.33 and 1.4, respectively.

analytically by considering the stability of the off state, it is
very difficult to perform such an analytical calculation, even
for L =2, in this case. To obtain the critical value we evalu-
ate, numerically, the maximum Lyapunov exponent of the
hyperplane: x(n,1)=x(n,2)="--=x(n,L)=0 by a product
of random matrix up to 6X10°. At the onset the maximum
Lyapunov exponent must vanish. The results are shown in
Fig. 2. From the results we can draw the following conclu-
sions: (i) A slight coupling may considerably reduce the on-
set noise strength [Fig. 2(a)]; even for =107 there is an
observable shift in a.; this means the onset of on-off inter-
mittency is very sensitive to the coupling strength. (ii) As the
system size becomes larger the onset becomes lower. This
reduction is saturated as the system size increases and the
onset remains unchanged in the large system size limit [Fig.
2(b)]; the relations can be best fitted by the following equa-
tion:

Aa,=e—a,=a(1—LPF). 2)

In Fig. 2(b) we show the results for e =0.1 and £=0.3. For
e=0.1, a=0.638, B~1.33, while for £€=0.3, a=~0.685,
B~1.4. (iii) Although B is related to &, one can see from
Fig. 2(a) that the critical lines in the a-&¢ plane are almost
parallel for different system sizes; this means the influence of
€ on S is not so strong.

for e=3
and L=2, 3)

and
x(n+1)= (1—s)z(n,1)+—;—z(n,2)+%z(n,3) glx(n)]

— 2
for e=5%

and L=3. 4)
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FIG. 4. The temporal distributions of the laminar phases for (i)
a=242, £=0.001; (ii)) a=2.1, £=0.1; (iii) a=2.05, £=0.3; (iv)
a=2.025, £=0.9. The dotted line is the asymptotic —3/2 power
law.
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FIG. 5. The spatial distributions of the laminar phases. (a)
a=275 £=0 (O); a=242, £=0.001 (O); a=2.1, £=0.1
(4A). The solid line is a plot of Eq. (7) with p=0.904. (b)
a=2.05, e=03 (A); a=2.025, £=0.9 (O). The solid line is the
—1 power law distribution.

But if we consider Egs. (3) and (4) as temporal systems with
& changing rather than fixing, i.e., single map systems by L
noise driving with different weight, what difference in criti-
cal values will emerge from the spatiotemporal systems? One
can analytically obtain the critical values for the onset of
intermittency from Egs. (3) and (4), which read

- 34+ — e+ (1 2
a.=exp T—.lne - n(l—g) ,
for L=2, ®
and
e
ac=exp{ 831n283+11(1—8)82+(2—8)31n(1—E)

-4(1—-8)3ln(1—s)}/6(1 —-8)82] forL=3. (6)

For comparison, we replot the critical lines of spatiotemporal
systems for L =2 and L =3, and plot the results of Egs. (5)
and (6) in Fig. 3. The critical value of onset in a multinoise
driving system is much lower compared to that of a single-
noise driving system, however, the critical values of the on-
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FIG. 6. (a) The maximum Lyapunov exponents versus a for
€=0.3: L=10 (solid); L =20 (dashed). (b) y versus a for £=0.3:
L=10 (< );L=20(+). The solid line is the best fit line by Eq. (11)
with C~7.5.

set in spatiotemporal systems are further lowered due to the
interactions of the spatial elements, and are much more sen-
sitive to €.

A distinct identity of on-off intermittency is that the tem-
poral distribution of the laminar phase at the critical point
displays an asymptotic —3/2 power law. Here we use system
size L =500 to take temporal and spatial statistics. Figure 4
shows the statistical results of temporal length of laminar
phase of one site for (i) a=2.42, £=0.001; (ii) a=2.1,
£=0.1; (iii) a=2.05, £=0.3; (iv) a=2.025, £=0.9; which
are all very near the critical lines. Although the local ele-
ments interact with each other, it is striking that it still has a
power law with exponent —3/2 at the onset like what is
obtained in low-dimensional systems. However, the spatial
distribution of the laminar phase is especially of interest
here. Is there a scaling for it at onset yet? For the spatial
distribution of the laminar phase we cannot make statistics at
one time step because of the limitation of system size in
numeric simulations. We do this as follows: we count the
number of a given space length laminar phase in the ring
[shown in Fig. 1(a)] for each iteration and sum the corre-
sponding numbers for all iterations. In Fig. 5 we show the
spatial distributions near the different onset points. We fix
L =500 to avoid the finite size effect. For £ =0, all the sites
are uncorrelated and the statistics are independent. One can
obtain an analytical form of the spatial distribution:
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P(H)=A"'(1-p)*p'. (7

Here p is the probability that the system stays at the off state
while (1—p) is that of the on state when one works with a
single logistic map. A=(1—p)p is the normalization con-
stant. In numerical simulation we use a=2.75 at which
p~0.904. Inserting it into Eq. (7) one finds the theoretical
prediction agrees very well with the numerical results [Fig.
5(a)]. As € increases, the exponential index becomes smaller
for larger / and the exponential decay law breaks for small
. Actually, for small / the exponential decay law is gradu-
ally replaced by a power law decay. As ¢ is large enough the
spatial distribution of laminar phase exhibits a —1 power
law with an exponential tail appearing at large ! [Fig. 5(b)].
As & becomes stronger the power law segment becomes
longer. The asymptotic distribution can be formulated as

I, I<I,

PO exp(—an), 1>1,. ®)

It is remarkable that for £ =0.9, the power law is valid up to
a length /;=60. The behavior of the spatial distribution can
be understood as follows: as € becomes larger the correlation
becomes stronger and the coherent length becomes longer;
for a given & the coherent length has a cutoff; once the
laminar phase’s length exceeds the cutoff length it occurs
uncorrelatedly and thus the spatial distribution of the laminar
state follows an exponential decay law. It is extremely diffi-
cult to derive the phase distribution in an extended system
analytically, so whether the —1 power law is general still
needs further investigations.
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Although the hyperplane loses its stability when the sys-
tem is beyond the onset, the maximum Lyapunov exponent
of the system is still negative. This feature is completely
different from the other kinds of intermittency in CML [9,11]
of which the maximum Lyapunov exponents are positive. In
Fig. 6(a) we show the maximum Lyapunov exponents versus
a for system sizes L =10 and L =20. In the whole parameter
region, the Lyapunov exponent A\ is negative, even for ex-
tremely large system size. At the vicinity of the onset, one
has the following scaling relation:

ANx—|a—a,|. 9)

To measure the degree of the chaotic outbursts we calculate
the average:

1 N L
y= anE > x(n,i) (10)

NoolVLla=1 i=1

of the on states. The numerical results for L =10 and
L =20 are shown in Fig. 6(b). No differences are found for
these two system sizes. Below the onset, y~0. Beyond the
onset we can fit them as

y*(a—a)(C—a) (11)
in the whole region. Since in the vicinity of the onset

C>a—a,, one has yx—Axg—a_., which agrees with the
result in Ref. [7].
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